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Abstract—Shape control strategies seek to bring deformable
objects towards a desired target shape. However, conventional
methods focus on reaching the target shape without considering
the extent to which the object is deformed during the control pro-
cess. Control actions may generate unnecessary deformations and
thus increase the possibility of object over-stressing and failure. In
this paper we tackle the problem of vision-based object-compliant
shape control (OCSC) with focus on 2D contours of texture-less
objects. We propose a novel shape control framework that makes
use of a multi-scale analysis of the contour’s length and curvature
to reduce the amount of deformation objects need to undergo
during the shape control task. We evaluate our approach with
simulations and experiments.

Index Terms—Visual servoing, multi-robot systems, shape
control, perception for grasping and manipulation.

I. INTRODUCTION

SHAPE control is required in multiple applications such as
industrial processes or domestic robotics [1] [2], where

preserving the object’s integrity can be a critical aspect for
the success of the manipulation task. Explicitly considering
and analysing the extent to which an object is deformed
during a shape control task constitutes an important challenge.
The amount of deformation the object undergoes may be
disregarded when the object allows for a large range of
deformations. However, we believe that avoiding unnecessary
deformations is a more reliable approach. One may suggest
the use of mechanical sensors (e.g. strain gauges, torque
sensors) in order to avoid reaching mechanical limits of the
object (e.g. elastic limit). However, the use of mechanical
sensors relies on costly and/or object-invasive setups while
not allowing full coverage of the object as positioning a large
amount of mechanical sensors may be inconvenient in most
applications. Therefore, we propose a vision-based object-
compliant shape control (OCSC) framework to reduce the
amount of deformation the object needs to undergo to acquire
the target shape (see Fig. 1).

A. Related work
Some approaches in the vision-based shape control liter-

ature, without focus on OCSC, use a reduced number of
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Fig. 1. Comparison of two different solutions for the same shape control
problem. The first one only considers extrinsic error between contour points
whereas the second one defines the shape error through our proposed shape
metric, resulting in a more object-compliant process (elements of the figure
introduced in section I-C).

shape features (such as feature points or segments) in order
to perform the shape control task (e.g., [3], [4]). This can be
of use in certain applications, however, in these frameworks,
features are blind to object parts that are not within their range
of description and thus they are not suitable for OCSC, where
a holistic analysis considers all of the object parts. Methods
such as those presented in [5], [6] or [7] analyse the object’s
shape in a global manner through its 2D visible silhouette
and the use of homogeneous contour mappings; they are
purely based on extrinsic errors1. However, despite globally
sampling the object’s geometry, some control methods require
filtering the shape’s information (e.g., [5], based on Principal
Component Analysis). Such methods might be disregarding
local yet critical deformation processes through filtering. We
therefore focus on analysis like those proposed in [6], based on
point-to-point error, or [7], based on frequency domain error,
as they provide a holistic error definition where filtering is not
necessarily required from a theoretical standpoint.

Some characteristic examples of point-to-point (P2P) and
frequency domain defined shape errors (or shape energies) are
presented in [6] and [7]. Other methods tackle the shape error
reduction defined by such energies while also incorporating
additional terms that consider deformation cost. In particular,
[9], [10] and [11] aim at reducing the P2P energy along with
deformation costs associated to the object’s strain. Deforma-
tion costs in [9] and [10] are based on the comparison of
Euclidean point distances with respect to the geodesic dis-
tances between the at-rest object points. This deformation cost
can be calculated directly in simulated processes where point
correspondences between object states are known. However,
in a real setup, such cost requires a mapping between object
states. Method in [10], rather than computing a mapping,
approximates the derivative of the strain cost with the miss-
alignment (i.e., cosine value) between the gripper’s velocity
vectors and the tangent vector (at the gripper’s position) to
the geodesic paths defined between pairs of grippers. This

1See [8] for a definition of extrinsic in the context of shape analysis.
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Fig. 2. Illustration of the problem setup and general shape control scheme. Object surfaces constitute the current and target shapes through their parameterised
contour curves γ(s, t), γ̄(s̄), with extrinsic representation through 2D coordinates x(s), x̄(s̄). A contour map between γ(s, t) and γ̄(s̄) is computed, serving
as input for the shape control strategy that defines robot actions ug to be applied to the object. In this paper, we use Jacobian-based shape energy minimisation
as shape control strategy. At each contour point s, a local reference ℜ(s) is defined through the tangent and normal vectors at s (see the detail at the right),
where a geodesic ball B(s, r) of radius r is shown.

approximation assumes pure tensile stress along geodesics
between grippers and deformations around the grippers to be
representative of deformations on the whole object. Another
geodesic-distance based deformation cost is proposed in [11],
where the variations on local distance between landmark points
are considered. Similarly to [9], [11] relies on tracking specific
object points and disregards bending stress and deformations
that do not significantly change geodesic distances.

A challenging problem regarding vision-based OCSC is the
definition of a holistic shape metric that, without depending
on the object’s texture, allows to generate low deformations
between object states (rather than relying on additional de-
formation costs and/or constraints). Deformation costs and
constraints can be used as support for such metric. However,
neither the shape metric nor the additional constraints/costs
should disregard changes in curvature: pronounced changes
in curvature imply large bending stress while not producing
significant changes on the object’s geodesic distances.

B. Object-compliant method overview

In this paper we present a vision-based OCSC framework
for deformable objects that lack visual texture (i.e., objects
whose surface points cannot be tracked). Other approaches
that tackle OCSC either rely on objects with rich texture (e.g.,
[9], [11]) or confine their analysis to the object regions that
are close to the grippers (e.g., [10]). Our proposed method
analyses the visible contour of the object in order to quantify
the amount of deformation it undergoes. We focus on shape
control processes involving slow and isotropic deformations
that allow to disregard inertia. The main contributions of this
paper are:
• A geometry-based deformation energy that constitutes a

shape metric. Such metric considers the object’s geometric
features in a multi-scale level and thus allows to quan-
tify deformations in a holistic manner. Furthermore, when
directly used as shape control error, the proposed metric
inherently leads to more object-compliant behaviours than
other conventional metrics (e.g., metrics as in [6] or [7]).
We validate our shape metric as a deformation measure
and as an object-compliant energy through comparisons in
simulations and experiments.

• An OCSC framework that extends the use of the proposed
shape metric and allows to introduce deformation costs and
constraints considering both changes in length (i.e., tensile
and compression stress) and curvature (i.e., bending stress)

of texture-less objects. In the literature, approaches such as
[9], [10] or [11] consider excessive stretching but disregard
deformations induced by pure compression or bending.

The proposed object-compliant metric is introduced in section
II. We develop on the OCSC framework in section III. The
performance of the framework is illustrated in section IV,
where we present comparative experiments using a dual-arm
manipulator (see the attached video).

C. Problem setup
Consider 2D visual contour data extracted from video

frames (see Fig. 2), that is a curve γ(s, t), parameterised by
s ∈ R, obtained from the texture-less object being manipu-
lated. Similarly, one can define the fixed target shape through
a curve γ̄(s̄), parameterised by s̄ ∈ R. Contour points have
extrinsic global coordinates x(s), x̄(s̄) ∈ R2. We define local
frames of reference ℜ(s), ℜ̄(s̄) on γ(s), γ̄(s̄) with orthogonal
axes in the tangent and the normal space. The object is grasped
by robotic grippers for which we assume proper grasping
stability. Grippers g do not need to be visible or placed along
the contour, they are modelled with single integrator dynamics
and perform 3 DoF actions ug ∈ R2 × S1 (2 translations and
1 rotation).

II. GEOMETRY-BASED DEFORMATION ENERGY

A. Proposed multi-scale normal (MSN) energy: EMSN

In this section we present a geometry-based deformation
energy for OCSC. In texture-less objects, the only visual
indicators of objects undergoing deformations are the local
changes in length and curvature of their contour. We therefore
define our analysis using these two key elements.

Our proposed energy relies on a shape representation
analogous to the discrete multi-scale Laplacian descriptors
presented in [12] for elastic contour mapping. We define a
continuous multi-scale normal (MSN) shape representation
that provides a notion of multi-scale mean curvature. We
make use of geodesic balls B(s, r) ⊆ γ(s) centred at s with
radius r ∈ (0, rmax] ⊂ R, (Fig. 2), being rmax = l(t)/2 and
l(t) ∈ R the total contour length. In this paper we will refer
to radius r as scale of analysis (or simply scale). A scale
defines the neighbouring region (i.e., the scope of analysis) at
a given point s. Therefore, our proposed shape representation
l(s, r) ∈ R2 is obtained as

l(s, r) = −1

r

∫
B(s,r)

xℜ(s)(s′)dl, (1)
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where xℜ(s)(s′) = (xℜ(s)(s′), yℜ(s)(s′))⊺ ∈ R2 are the
extrinsic position vectors of points corresponding to parameter
values s′ ∈ B(s, r) and expressed in the reference ℜ(s).
Element dl in (1) is the differential element of contour length
l(t). As r → 0, (1) leads to the curvature weighted normal
vectors (referred to ℜ(s)). Coordinates of points within the in-
tegration domain are still expressed from frame ℜ(s) ̸≡ ℜ(s′)
and, therefore, descriptors l(s, r) constitute both intrinsic and
extrinsic descriptors [8].

Consider s̄ = Π(s, t) where Π(s, t) : γ(t) → γ̄ is an elastic
map (diffeomorphism) that maximises multi-scale curvature
similarity between contours. Using the shape representation
(1), we define shape error eMSN as

eMSN(s, r, t) = l(s, r, t)− l̄(Π(s, t), r), (2)

where l̄(Π(s, t), r) constitutes the multi-scale normal (MSN)
descriptor of the target shape at point Π(s, t) = s̄. Using error
(2) we introduce our proposed geometry-based deformation
energy as:

EMSN(γ(t), γ̄) = min
Π

∫ l(t)

0

∫ rmax

0

e⊺MSNeMSNdrds, (3)

where l(t) is the length of curve γ(t). The optimisation process
for obtaining Π in 1D domains can be performed by means
of the Fast Marching Method (as proposed in [12]).

B. Characteristics of EMSN as a shape metric

Energy EMSN quantifies differences between shapes
through their geometric features as it constitutes a metric in
shape space as defined in [13]. That is, considering three
shapes γ1, γ2 and γ3:

EMSN(γ1, γ2) = EMSN(γ2, γ1),

EMSN(γ1, γ2) = 0 ⇒ γ1 ≡ γ2,

EMSN(γ1, γ3) ≤ EMSN(γ1, γ2) + EMSN(γ2, γ3).

(4)

Some relevant features of metric EMSN for OCSC are:
1) Invariance to SE(2): EMSN decouples rigid motions

from shape-defining characteristics. Our analysis is performed
from local frames ℜ(s) (and ℜ̄(s̄)) thus making errors (2)
locally invariant to SE(2) and energy (3) globally invariant
to SE(2). In the literature, a common approach for ensuring
SE(2) invariance involves using the Procrustes rigid transform
[6], [13], [14]. However, a global rigid adjustment of the target
shape may increment local errors for which no corrective
action can be taken (deformable objects can be highly under-
actuated).

2) Multi-scale scope: Given an unfeasible target shape
(conditioned by both the deformation properties of the object
and the configuration of the grippers), a multi-scale analysis
allows the error reduction of geometric features appearing at
larger scales, while simultaneously preserving local geometric
features.

3) Use of elastic mapping: Geometry-preserving elastic
maps favour shape evolution paths of lower deformation.
Conventional approaches such as [6] or [7] use homogeneous
mappings between contours and thus assume isometric defor-
mations (i.e., stretching/compressing processes are assumed to
be negligible). When dealing with non-isometric deformations,
homogeneous mappings define errors that generate larger
deformation paths (i.e., deviations that may even affect the
feasibility of the task).

4) Joint intrinsic-extrinsic metric: EMSN is intrinsic,
since it is defined by geodesic distances and local coordinates,
and extrinsic, as it is based on the multi-scale mean normal
curvature obtained from the extrinsic analysis of domains
B(s, r). In shape control, a conventional approach is to min-
imise extrinsic energies that disregard the object’s topology.
The joint intrinsic-extrinsic nature of EMSN makes it aware of
topology changes and non-isometric deformations [8] leading
to gentler deformation paths.

C. Extrinsically-defined shape energies

In this section, we revisit general definitions of the conven-
tional extrinsic shape energies EP2P, used in [6], [9], [12], [15]
or [16], and EFT, used in [7]. We endow them with elastic
maps in order to fairly compare their performance with our
proposed energy EMSN in upcoming sections.

The point-to-point (P2P) error, endowed with an elastic map
Π, can be formulated as:

eP2P(s, t) = x(s, t)− (R∗x̄(Π(s, t)) + t∗) , (5)

where x(s, t), x̄(Π(s, t)) ∈ R2 are the extrinsic coordinates of
the current and target contour points respectively. Transform
(R∗, t∗) is the orthogonal Procrustes rigid transform [13] that,
by removing the rigid translation and rotation component from
the point-to-point error, minimises the energy:

EP2P(γ(t), γ̄) = min
R∗, t∗,Π

∫ l(t)

0

e⊺P2PeP2Pds. (6)

Alternatively, energy EFT is defined in the frequency domain
through the Fourier Transform. Consider the complex function
z(s) = x(s) + y(s)i, where the x(s) coordinates of γ(s)
constitute the real term and the y(s) coordinates the imaginary
term. The complex Fourier coefficients cn, c̄n obtained from
z(s), z̄(Π(s)) lead to the Fourier-based energy:

EFT(γ(t), γ̄) = min
Π

∞∑
n=−∞

|cn − c̄n|2 . (7)

Note that the summation bounds in (7) can be truncated thus
allowing to filter out high frequency (nosiy) components.

Lemma II.1. Shape energies EP2P and EFT, defined in
(6) and (7) respectively, are equivalent (up to a Procrustes
transform).



4

t0 t tf

t0 t tf

1.
1.

 h
om

og
en

eo
u

s
m

ap
p

in
g

1.
2

. e
la

st
ic

m
ap

p
in

g
1.

1.
 h

om
og

en
eo

u
s

m
ap

p
in

g
1.

2
. e

la
st

ic
m

ap
p

in
g

homog.

elastic

homog.

elastic

Fig. 3. Two experiments involving the manipulation of a sweater. Both solve the same shape control problem by reducing the shapes’ Fourier-based spectral
energy. Experiment 1.1 makes use of homogeneous contour mapping whereas Exp. 1.2 uses an elastic mapping that considers resemblance of local geometric
features (i.e., EFT in (7)). The results are analysed through EMSN to validate it as a deformation measure. On the top, the initial shape state γ(s, t0) (red
dashed line), the shape evolution γ(t) (red line) and the target shape γ̄ (blue dashed line) are shown with the contour maps: thin lines linking the contours in
red for the homogeneous map (Exp. 1.1) and in gray for the elastic map Π(s, t) (Exp. 1.2). Three relevant frames per experiment are shown (bottom left),
corresponding to the time moments framed in black rectangles on the top sequences. First plot on the bottom (centred) shows the evolution of the shape error
expressed in terms of EMSN(γ(t), γ̄). Second plot (bottom right) shows the evolution of the deformation cost EMSN(γ(t0), γ(t)) with respect to the shape
error EMSN(γ(t), γ̄). In both plots, the minimum achieved error values are plotted with dashed lines. Metric EMSN properly represents the shape error
evolution and the deformation path followed by each process. The homogeneous map deviates the shape evolution in Exp. 1.1 towards a higher deformation
path (left sleeve folds inconveniently), thus hindering convergence to the desired shape. Cost EMSN(γ(t0), γ(t)) reflects this fact: the red line lies above the
green line throughout the whole error evolution (second plot).

Proof. The proof follows from the direct application of Par-
seval’s Theorem [17] to (7):

∞∑
n=−∞

|cn − c̄n|2 =

∫ l(t)

0

|z(s)− z̄(Π(s))|2 ds

=

∫ l(t)

0

∥x(s)− x̄(Π(s))∥2ds =
∫ l(t)

0

e⊺P2PeP2Pds. (8)

D. Validation of EMSN for OCSC

In this section we validate EMSN, through experiments and
simulations, as a metric that allows to quantify deformation
and as a shape error that produces lower deformation paths in
shape control.

The experiments presented along this paper are performed
on the ABB Yumi dual-arm robot using colour-based object
segmentation (in CIELAB colour space) and α-shape contour
extraction. The continuous elastic contour map Π(s, t) is
computed as in [12] and then sampled to interpolate values
of l̄(s̄, r) in (2) with sub-pixel resolution. We avoid using
any specific Jacobian update-rules (as in [5] or [7]) in order
to compare the different energies as consistently as possible:
Jacobians are experimentally estimated throughout the whole
process in all the experiments.

To illustrate the performance of EMSN as a deformation
measure, we use it to analyse the results of experiments 1.1
and 1.2 (Fig. 3). Both experiments involve the reduction of the

shapes’ Fourier-based spectral energy. However, Exp. 1.1 uses
a homogeneous contour mapping, whereas Exp. 1.2 uses elas-
tic mapping (i.e., EFT in (7)). As expected, the homogeneous
mapping in Exp. 1.1 generates a larger deformation process.
The proposed EMSN, used to analyse the results, properly
identifies such deviation.

Given lemma II.1, either EP2P in (6) or EFT in (7) serve
to illustrate the importance of EMSN being an intrinsic and
extrinsic metric for OCSC. In order to provide a better insight
on the characteristics of EMSN as object-compliant shape
metric, a comparison between two simulations is illustrated
in Fig. 4. The first simulation seeks to reduce the extrinsic
energy EP2P(γ(t), γ̄) whereas the second simulation reduces
EMSN(γ(t), γ̄). The control strategy based on the reduction of
EMSN leads to lower measured deformation as illustrated in
the plots of Fig. 4. Moreover, the deformation cost expressed in
terms of EMSN(γ(t0), γ(t)) is representative of the deforma-
tion values obtained from the simulation (unlike deformation
cost expressed as EP2P(γ(t0), γ(t))).

To further illustrate how our shape metric EMSN(γ(t), γ̄)
inherently reduces not only the compression/extension strain
but also the bending processes, in Fig. 5 we present Exp. 2.1
and Exp. 2.2. They involve the manipulation of an Eth-
ernet cable that cannot be stretched or compressed (pure
isometric deformations). Strategies based on the reduction
of EP2P(γ(t), γ̄) and EMSN(γ(t), γ̄) are compared again in
Exp. 2.1 and Exp. 2.2 respectively. This particular shape
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Fig. 4. Two simulations illustrate the performance of EMSN as shape error and deformation cost. A shape control problem is solved using two strategies, one
reduces EP2P(γ(t), γ̄), the other EMSN(γ(t), γ̄). On the top sequences, the simulation deformation mesh (red triangles) and the gripper (black square) are
shown along with other elements introduced in the description of Fig. 3. On the bottom, three plots illustrate the performance of EMSN as deformation energy
by comparing it to the purely extrinsic energy EP2P. The first plot shows, for both control strategies, the deformation path that shapes follow according to
EP2P, i.e., it plots deformation cost EP2P(γ(t0), γ(t)) with respect to shape error EP2P(γ(t), γ̄) (the EMSN based control, in green, leads to a larger cost
path). The plot in the middle shows the deformation path in terms of EMSN (the EMSN based control, in green, leads to a significantly lower deformation
path). The third plot validates the information provided by the EMSN-based analysis by showing the evolution of the actual deformation with respect to time.
That is, the stretch measured in the simulation (computed as the sum of the absolute value of length variations on the mesh’s segments) is significantly larger
on the strategy that reduces EP2P.

control problem constitutes a clear example of how seeking
a local minimum in extrinsic energies such as EP2P(γ(t), γ̄)
can lead to very large deformation processes that may even
result in object self-intersections. See the high deformation
and self-intersection of the cable in Exp. 2.1. On the other
hand, the joint nature of EMSN(γ(t), γ̄) allows to untangle the
cable and achieve a proper solution in Exp. 2.2. In Exp. 2.2
the intrinsic nature of the EMSN (SE(2) invariant) seeks to
match the target contour’s curvature regardless of its rigid
configuration (position and orientation). That is, the strategy in
Exp. 2.2 seeks object shape control rather than object position
control, as Exp. 2.1 does.

III. OCSC FRAMEWORK

The use of EMSN(γ(t), γ̄) as shape error favours object-
compliant behaviour of the shape control system. However,
some applications may require further penalising the amount
of deformation during the control process in order to limit
specific object configurations. The multi-scale definition of
EMSN and the information enclosed in the elastic map Π
allow for the object-compliant analysis to be taken further,
we develop and exploit both concepts in this section.

A. Object-compliant energy: EOC

EMSN energy can be used to formulate both shape error
EMSN(γ(t), γ̄) and deformation cost EMSN(γ(t0), γ(t)). One
may suggest combining both in a shape control strategy that
seeks reducing an object-compliant (OC) energy:

EOC(γ(t), γ̄) = EMSN(γ(t), γ̄) + βEMSN(γ(t0), γ(t)), (9)

where parameter β ≥ 0 allows to weigh the deformation cost
with respect to the shape error of the control task. Equation

(9) constitutes the projection of two optimisation functions
onto a single one EOC. Since both cost functions are defined
through the same metric EMSN, (9) can be also regarded as
shape-evolution path (parameterised by β) in the shape space
defined by the shape representation (1). This feature means
that establishing a specific value of β in (9) is equivalent
to defining an new target shape γβ in-between γ(t0) and γ̄,
resulting from an interpolation in the shape representation
space defined by (1). With these considerations (9) can be
expressed as:

EOC(γ(t), γ̄) = EMSN(γ(t), γβ). (10)

The major issue with (10) is that it does not consider per
se how the object is deforming, but rather defining a closer
reference γβ in shape space. One could try to highly penalise
deforming away from γ(t0) by establishing very high values
of β in (9). That would lead to re-defining a target shape γβ
in the neighbourhood of γ(t0) (locally in shape space). Very
close-by target shapes γβ might imply a worse performance
in shape control tasks. On the other hand, if we relax the
deformation cost and establish low values of β, the obtained
reference shapes γβ still do not guarantee an object-compliant
shape evolution path towards γ̄.

For this reason, we propose to exploit the multi-scale nature
of EMSN and define the following object-compliant energy:

EOC(γ(t), γ̄) = EMSN(γ(t), γ̄)

+ β min
Π

∫ l(t)

0

∫ rOC

0

∥l(s, r, t)− l(Π(s, t), r, t0)∥2drds,

(11)
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Fig. 5. Two experiments illustrate the importance of the joint nature (both intrinsic and extrinsic) of EMSN(γ(t), γ̄) with respect to extrinsic energies such
as EP2P(γ(t), γ̄). An Ethernet cable that can only be deformed isometrically needs to be untangled in order to achieve the shape control task (gripper on
the left is fixed). Control laws in experiments 2.1 and 2.2 seek reducing EP2P(γ(t), γ̄) and EMSN(γ(t), γ̄) (respectively). Elements of the shape sequences
(and the video frames) are introduced in the description of Fig. 3. For both experiments, the first plot (centre) shows the evolution of EMSN(γ(t), γ̄) and
the second plot (right) shows the evolution of EP2P(γ(t), γ̄). Reduction of EP2P (extrinsic) in Exp. 2.1 pursues a local minimum that leads to twisting the
cable thus leading to large deformations, oscillations and self-occlusions that hinder the control process. Reducing EMSN in Exp. 2.2 allows to untangle the
cable and achieve a proper final shape. The evolution of the EP2P energy of Exp. 2.2 (green plot on the right) shows the need of escaping a local minimum,
i.e., temporarily increasing energy EP2P.

where the deformation cost (second term) is defined within a
specific scale range r ∈ (0, rOC] (being 0 < rOC ≤ rmax). As
the scale value rOC → 0, the second term in the right hand
side of (11) becomes negligible thus (11) turns equivalent to
(3). On the other hand, if rOC = rmax, (11) is equivalent to
(9). That is, rather than disregarding the deformation cost in
the formulation (as (3) does) or defining a specific intermediate
shape state between two shapes like (9), the object-compliant
energy EOC in (11) penalises changes in length and curvature
on a specifically targeted range of scales.

This formulation allows to establish high penalisation values
to the deformation cost (i.e., establish very high values for
β) while not over-constraining the set of low deformation
paths. If the target shape γ̄ is within (or nearby) any of the
shape evolution paths defined by (11), deformations can be
highly penalised while still allowing to significantly reduce
the shape control error. The choice of rOC is closely related
to the rigidness of the deformable object. If the object does
not present a very high rigidness (e.g., a chewing gum), rOC

can take very low values whereas objects with higher rigidness
(e.g., a cardboard piece) will benefit from higher rOC values
that penalise large changes in both local and larger-scale
curvatures.

B. Elastic mapping based strain limits

A global strain measure could be approximated through the
change in the total length of the object e(t) = l(t)/l(t0).
However, strain e(t) does not provide a reliable measure when
deformations are unevenly distributed over the object. We

therefore require a local measure of the strain that allows to
detect strain limits being reached in specific object parts.

Under the assumption of isotropic behaviour, we propose
characterising the object’s local strain through the evolution
of the elastic map Πϵ defined between its current state γ(t)
and its initial state γ(t0):

Πϵ = arg min
Πϵ

∫ l(t)

0

∫ rmax

0

∥l(s, r, t)−l(Πϵ(s, t), r, t0)∥2drds.

(12)
That is, we approximate the local strain ϵ(s, t) as:

ϵ(s, t) ≈ ∂Πϵ(s, t)

∂s

∣∣∣∣
t

. (13)

Partial derivative ∂Πϵ(s, t)/∂s provides a measure of local
change in the relative density of the object (with respect to
its density at t0). If ϵ(s, t) = 1 the object mass distribution
at point s is the same as in the initial time instant. On the
other hand, if ϵ(s, t) > 1 or ϵ(s, t) < 1 the object has been
respectively stretched or compressed at s, respectively.

IV. EXPERIMENTS

The first group of experiments (Fig. 6) compares the perfor-
mance of a Jacobian-based control law applied to four different
energies, particularly EP2P, EFT, EMSN and EOC (Exp. 3.1
to 3.4, respectively). The extrinsic shape energies EFT and
EP2P lead to larger deformation paths (i.e., equivalent paths,
lemma II.1), whereas the strategy that seeks reducing EOC

leads to lower deformation. Note time instant t1 where, if
instead of cloth a thin metal sheet was being deformed, EMSN
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Fig. 6. Four experiments involve shape control of a sweater (right gripper is fixed). The object-compliant performance of four shape control strategies is
compared, reducing respectively EFT (Exp. 3.1), EP2P (Exp. 3.2), EMSN (Exp. 3.3) and EOC (Exp. 3.4). Experiment 3.4 reduces EOC (11) with β = 1
and rOC = 0.1rmax thus penalising relatively local deformations. Elements in graphs and plots are introduced in the description of Fig. 3 except for the
box-plot on the right, which represents the deformation cost distribution of each strategy according to EMSN(γ(t0), γ(t)). First plot (left) shows how all
strategies lead to similar final absolute error values. In the middle plot, Exp. 3.4 leads to the lowest deformation path (purple line). This is shown in the
shape evolution sequences (above), where Exp. 3.4 generates almost no changes in the local curvature of the shape besides the bending in the pivoting region
(centre of the object). The equivalence of EP2P and EFT (lemma II.1) is exemplified in Exp. 3.1 and Exp. 3.2: both extrinsic energies follow similar shape
evolution paths (middle plot), generate large deformations and, unlike Exp. 3.3 and Exp. 3.4, lead to curvature error in the middle part of the object (see the
tf instants above).



8

4
.1

.

4.1.

b
as

ed
 c

ri
te

ri
on

4
.2

.

4.2.

b
as

ed
 c

ri
te

ri
on

Fig. 7. Stretching process of a cardboard piece towards an unfeasible target
shape that requires over-stretching the object. In the plots, average values
ϵavg(t) ≡ e(t), maximum ϵmax(t) and minimum ϵmin(t) values of ϵ(s, t)
with respect to s are plotted, hence the dependence on s has been removed
from the y-axis label. The system receives as input the strain limit of
ϵlimit = 1.5. In Exp. 4.1 the strain is measured through e(t) whereas in
Exp. 4.2 ϵ(t) is used as local strain measure. This task involves unevenly
distributed contour length changes: vertical sides of the shape do not change
their length. In Exp. 4.1, Strain measure e(t) does not perceive the limit
ϵlimit = 1.5 being reached, thus the object is over-stretched leading to
grip failure: note the abrupt change in plot 4.1 (around second 45). Local
strain measure ϵmax(t) in Exp. 4.2 allows to stop the control when the strain
limit is reached. Note that ϵ(t) also allows (through ϵmin(t)) to consider the
maximum local compression that takes place on the object.

would likely lead to high compression and higher chances
of bucking, whereas EOC generates a less aggressive shape
evolution. In experiment 3.4, the solution trajectory of the
robot arm performs a longer circular arch, thus leading to a
slightly slower performance. Further analysis is presented in
the description of Fig. 6. Experiments 4.1 and 4.2 in Fig. 7
illustrate the performance of (13) as an approximation of a
local strain measure. They compare e(t) (Exp. 4.1) and ϵ(t)
(Exp. 4.2) as approximations of an object’s strain (with strain
limit 1.5 as input information). Measure e(t) leads to an over-
stretching action that causes gripper failure. On the other hand,
ϵ(t) allows to properly stop the process thus preventing failure
(see description on Fig. 7 for more insights).

V. CONCLUSIONS

We introduced a contour-based shape metric and a frame-
work for vision-based OCSC with focus on texture-less ob-
jects. Experiments that validate the approach illustrate how en-
ergy EMSN achieves a balance between reducing the amount of
deformation and faster performance, while EOC enables more
conservative (less aggressive) shape evolutions but presents a
slightly slower performance. Some interesting future research
lines include testing the performance of EMSN on 3D contour
data, thus allowing to define target shapes in more detail.
However, regardless of 2D or 3D contour data being used,
there may be cases where the visual contour does not change
significantly. For instance, the object may be undergoing large
deformations that cannot be noticed (e.g. a bulging object).
This problem could be tackled by extending the method for
the analysis of surfaces (rather than contours), with the main

challenges being the computation of elastic maps between sur-
faces as well as the surface parameterisation and the definition
of the local frames of reference ℜ(s). Another avenue is to
investigate how force information obtained from force sensors
on the manipulators [18] can complement EOC.
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